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1. Introduction

We consider the following generalized fractional minimax problem

(P) minimize sup
y2Y

fðx; yÞ
hðx; yÞ subject to gðxÞO 0;

where
(a) Y is a compact subset of Rm,
(b) fð�; �Þ:Rn�Rm!R is a differentiable function,
(c) hð�; �Þ:Rn�Rm!R is a differentiable function,
(d) gð�Þ:Rn!R

p is a differentiable function.

In addition, we require

fðx; yÞP0 and hðx; yÞ > 0 8ðx; yÞ 2 X�Y;
where X ¼ fx 2 R

n : gðxÞO 0g is the set of feasible solutions of problem
(P).
For the case of convex differentiabe minimax fractional programming,

Yadav and Mukherjee (see Ref. [1]) formulated two dual models and
established some duality results. Later, Chandra and Kumar (see Ref. [2])
pointed out certain omissions and inconsistencies in the formulation of
Yadav and Mukherjee in [1], and they constructed two modified dual
models and proved duality theorems for the convex differentiable
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fractional minimax programming. To relax the convexity assumptions in
theorems on sufficient optimality conditions and duality, various general-
ized convexity concepts have been proposed. In [3] Liu, Wu and Sheu
relaxed the convexity assumptions on the sufficient optimality in [2] and
employed the optimality conditions to construct one parametric and two
parametric-free dual models. They also established weak duality, strong
duality, and strict converse duality theorems involving pseudoconvex and
quasiconvex functions. Recently, Liu and Wu (see Refs. [4, 5]) derived
the sufficient optimality conditions and duality theorems for the general-
ized fractional minimax problem in the framework of invex functions and
ðF;qÞ-convex functions, respectively. We also note that there were some
new ideas of Bector, Suneja and Gupta [6], Rueda, Hanson and Singh [7]
proposed on generalized convexity. In this paper,based on the ideas of
Bector, Suneja and Gupta [6], Rueda, Hanson and Singh [7] and the con-
cepts of ðF;q; hÞ- pseudoconvexity as well as ðF;q; hÞ-quasiconvexity in [5]
we present the new concepts which extend the class of generalized con-
vexity in [5–7]. Motivated by Chandra and Kumar [2] and Liu et al.
[3–5], we introduce a new dual model for the generalized fractional mini-
max programming problem (P). Our dual model unifies two dual models
of [4, 5] and includes some new dual models as special cases. We also
establish sufficiency and duality for the generalized fractional minimax
programming problem (P) with weakened convexity. Thus, this article
unifies and extends the results of [4, 5] in the framework of generalized
convexity and dual models.
The organization of the article is as follows. Some definitions and nota-

tions are given in Section 2. The sufficient optimality conditions are estab-
lished in Section 3. By employing the sufficient conditions, we formulate a
dual model and derive a number of duality results in Section 4.

2. Notations and Preliminary Results

Throughout the article we let

J ¼ f1; 2; . . . ; pg;
JðxÞ ¼ fj 2 J : gjðxÞ ¼ 0g;

YðxÞ ¼ y 2 Y :
fðx; yÞ
hðx; yÞ ¼ sup

z2Y

fðx; zÞ
hðx; zÞ

� �
;

K ¼ fðs; t; �yÞ 2 N�Rs
þ�Rms : 1O sO nþ 1;

t ¼ ðt1; . . . ; tsÞ 2 R
s
þwith

Xs
i¼1

ti ¼ 1 and

�y ¼ ðy1; . . . ; ysÞ with yi 2 YðxÞ; i ¼ 1; . . . ; s for some x 2 Xg:
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We assume the gradient r ¼ rx is with respect to the variable x.
In order to establish the sufficient optimality conditions in Section 3, we

first recall the following necessary conditions for optimality of (P) given by
Chandra and Kumar in [2].

THEOREM 2.1 (Necessary conditions) [2]. Let x� be a (P)-optimal solution
and let rgjðx�Þ; j 2 Jðx�Þ be linearly independent. Then there exist
ðs�; t�; �yÞ 2 K; v� 2 R and l� 2 R

p
þ, such that

Xs�
i¼1

t�i frfðx�; yiÞ � v�rhðx�; yiÞg þ
Xp
j¼1

l�jrgjðx�Þ ¼ 0; ð1Þ

fðx�; yiÞ � v�hðx�; yiÞ ¼ 0; i ¼ 1; . . . ; s�; ð2Þ
Xp
j¼1

l�j gjðx�Þ ¼ 0; ð3Þ

l� 2 R
p
þ; t�i P0;

Xs�
i¼1

t�i ¼ 1; yi 2 Yðx�Þ; i ¼ 1; . . . ; s�: ð4Þ

We also need the following definition in the sequel.

DEFINITION 2.1. A functional F : X� X� R
n ! R (where X � R

n) is said
to be sublinear if for ðx;x0Þ 2 X� X,

Fðx; x0; a1 þ a2ÞOFðx; x0; a1Þ þ Fðx;x0; a2Þ 8a1; a2 2 R
n

and

Fðx; x0; aaÞ ¼ aFðx; x0; aÞ 8a 2 R; aP0 and a 2 R
n:

It is obvious that Fðx;x0; 0Þ ¼ 0.

3. Sufficient Conditions

In this section, we obtain sufficient optimality conditions for (P) based on
the ideas of Rueda, Hanson and Singh in [7].
Let F:X� X� R

n ! R be sublinear, /0;/1:R! R; h:Rn � R
n ! R

n,
and b0; b1:X� X! Rþ. Let q0;q1 be real numbers.

THEOREM 3.1 (Sufficient condition). Suppose that ðx�; v�;l�; s�; t�; �yÞ sat-
isfies relations (1)–(4) and there exist F; h;/0; b0; q0 and /1; b1;q1 such that
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F x;x�;
Xs�
i¼1

t�irðfðx�; yiÞ � v�hðx�; yiÞÞ
 !

P� q0khðx;x�Þk2

¼) b0ðx; x�Þ/0

Xs�
i¼1

t�i ðfðx; yiÞ � v�hðx; yiÞÞ
 

�
Xs�
i¼1

t�i ðfðx�; yiÞ � v�hðx�; yiÞÞ
!

P 0 ð5Þ

and

�b1ðx;x�Þ/1

Xp
j¼1

l�j gjðx�Þ
 !

O 0 ¼) F x;x�;
Xp
j¼1

l�jrgjðx�Þ
 !

O � q1khðx;x�Þk2: ð6Þ

Further, assume

aP0 ¼) /1ðaÞP0; ð7Þ
/0ðaÞP0 ¼) aP0; ð8Þ
b0ðx;x�Þ � 0; b1ðx;x�Þ > 0; ð9Þ
q0 þ q1P0: ð10Þ

Then x� is an optimal solution of (P).

Proof. We proceed by contradiction. Suppose to the contrary that x� is
not an optimal solution for (P). Then there exists a (P)-feasible point x,
such that

v� ¼ fðx�; yiÞ
hðx�; yiÞ

> sup
y2Y

fðx; yÞ
hðx; yÞ ; i ¼ 1; . . . ; s�:

Thus, we have

fðx; yÞ � v�hðx; yÞ < 0 8y 2 Y: ð11Þ

By (2), (4) and (11), we obtain

Xs�
i¼1

t�i ðfðx; yiÞ � v�hðx; yiÞÞ <
Xs�
i¼1

t�i ðfðx�; yiÞ � v�hðx�; yiÞÞ: ð12Þ

On the other hand, from (3), (7) and (9) we have
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�b1ðx; x�Þ/1

Xp
j¼1

l�j gjðx�Þ
 !

O 0;

which by (6) implies

F x;x�;
Xp
j¼1

l�jrgjðx�Þ
 !

O � q1khðx;x�Þk2:

It follows from (1), the sublinearity of F and (10) that

F x;x�;
Xs�
i¼1

t�i ðrfðx�; yiÞ � v�rhðx�; yiÞÞ
 !

P� q0khðx;x�Þk2:

Then, by (5) we have

b0ðx;x�Þ/0

Xs�
i¼1

t�i ðfðx;yiÞ�v�hðx;yiÞÞ�
Xs�
i¼1

t�i ðfðx�;yiÞ�v�hðx�;yiÞÞ
 !

P0:

Finally from (8) and (9), we conclude that

Xs�
i¼1

t�i ðfðx; yiÞ � v�hðx; yiÞÞ �
Xs�
i¼1

t�i ðfðx�; yiÞ � v�hðx�; yiÞÞP 0;

which is a contradiction to (12). Therefore, x� is an optimal solution for
(P). The theorem is proved.

Remark 3.1. If /0ðtÞ ¼ /1ðtÞ ¼ t and b0ðx;x�Þ ¼ b1ðx;x�Þ ¼ 1, then
clearly Theorem 3.1 reduce to Theorem 3.1 in [5]. If /0ðtÞ ¼ /1ðtÞ
¼ t; b0ðx; x�Þ ¼ b1ðx; x�Þ ¼ 1;q0 ¼ q1 ¼ 0;Fðx; u; aÞ ¼ gðx; uÞTa, where g is
a functional from X� X to R

n, then Theorem 3.1 reduce to Theorem 2.2
in [4].
The following example shows that the conditions of Theorem 3.1 are

weaker than the sufficient conditions in [4, 5].

EXAMPLE 3.1. Let fðx; yÞ ¼ cosxþ y2 þ1; hðx; yÞ ¼ 1; giðxÞ ¼ 0; i ¼ 1; 2;
. . . ; p;Y ¼ ½�1; 1�;X ¼ ð0; 2pÞ. It is obvious that YðxÞ ¼ f�1; 1g. Let
wðxÞ ¼ supY fðx; yÞ=hðx; yÞ. Then wðxÞ ¼ cos xþ 2. We note that x ¼ p is
an optimal solution for minX supY fðx; yÞ=hðx; yÞ. If Fðx;x�; yÞ ¼ gðx; x�ÞTy,
and gðx; yÞ ¼ y� x; q0 ¼ 0; q1 ¼ 0, and h ¼ 0, then wðxÞ is not ðF;q0; hÞ-
pseudoconvex at x� ¼ p. Thus, using the result in [4, 5], we can not show
that x� ¼ p is an optimal solution of minX supY fðx; yÞ=hðx; yÞ. However, if
we define
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b0ðx; x�Þ ¼

�1; x�O xO p; 0 < x� < p;

0; x < p; 0 < x� < p;

�1; p < xO x�; p < x� < 2p;

0; xO p; p < x� < 2p;

8>>>>><
>>>>>:

/0ðtÞ ¼ /1ðtÞ ¼ t; b1ðx; x�Þ ¼ 1;q0 ¼ q1 ¼ 0, then, fðx; yÞ and hðx; yÞ ¼ 1
satisfy the conditions of Theorem 3.1 at x� ¼ p. Therefore x� ¼ p is an
optimal solution for minX supY fðx; yÞ.

THEOREM 3.2. Suppose that ðx�; v�;l�; s�; t�; �yÞ satisfy relations (1)–(4) and
there exist F; h;/0; b0;q0 and /1; b1;q1 such that

F x;x�;
Xs�
i¼1

t�irðfðx�; yiÞ � v�hðx�; yiÞÞ
 !

P � q0khðx; x�Þk2

¼) b0ðx;x�Þ/0

Xs�
i¼1

t�i ðfðx; yiÞ � vhðx; yiÞÞ
 

�
Xs�
i¼1

t�i ðfðx�; yiÞ � v�hðx�; yiÞÞ
!
> 0; ð13Þ

or equivalently,

b0ðx;x�Þ/0

Xs�
i¼1

t�i ðfðx;yiÞ�v�hðx;yiÞÞ�
Xs�
i¼1

t�i ðfðx�;yiÞ�v�hðx�;yiÞÞ
 !

O0

¼)F x; x�;
Xs�
i¼1

t�irðfðx�;yiÞ�v�hðx�;yiÞÞ
 !

<�q0khðx;x�Þk2

ð14Þ
and

�b1ðx; x�Þ/1

Xp
j¼1

l�j gjðx�Þ
 !

O 0 ¼) F x; x�;
Xp
j¼1

l�jrgjðx�Þ
 !

O � q1khðx; x�Þk2: ð15Þ
Further, assume (7), (9), (10) and

aO 0 ¼) /0ðaÞO 0; ð16Þ

are satisfied. Then x� is an optimal solution of (P).

Proof. Suppose that x� is not an optimal solution for (P). Then there
exists a (P)-feasible point x, such that

v� ¼ fðx�; yiÞ
hðx�; yiÞ

> sup
y2Y

fðx; yÞ
hðx; yÞ ; i ¼ 1; . . . ; s�:
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Thus, we have

fðx; yÞ � v�hðx; yÞ < 0 8y 2 Y: ð17Þ

By (2), (4) and (17), we obtain

Xs�
i¼1

t�i ðfðx; yiÞ � v�hðx; yiÞÞ <
Xs�
i¼1

t�i ðfðx�; yiÞ � v�hðx�; yiÞÞ: ð18Þ

Using (18), (16), (9) and (14), we have

F x;x�;
Xs�
i¼1

t�irðfðx�; yiÞ � v�hðx�; yiÞÞ
 !

< �q0khðx; x�Þk2: ð19Þ

By (9), (7), (15) and (3) it follows that

F x;x�;
Xp
j¼1

l�jrgjðx�Þ
 !

O � q1khðx;x�Þk2: ð20Þ

Now, on adding (19) and (20), and making use of the sublinearity of F and
(10), we obtain

F x;x�;
Xs�
i¼1

t�irðfðx�; yiÞ � v�hðx�; yiÞÞ þ
Xp
j¼1

l�jrgjðx�Þ
 !

< 0:

On the other hand, (1) implies

Fðx; x�;
Xs�
i¼1

t�irðfðx�; yiÞ � v�hðx�; yiÞ þ
Xp
j¼1

l�jrgjðx�ÞÞ ¼ 0:

Hence we have a contradiction. Therefore, x� is an optimal solution for
(P). This completes the proof of the theroem.

THEOREM 3.3. Suppose that ðx�; v�;l�; s�; t�; �y Þ satisfy relations (1)–(4) and
there exist F; h;/0; b0;q0 and /1; b1;q1 such that

b0ðx;x�Þ/0

Xs�
i¼1

t�i ðfðx;yiÞ�v�hðx;yiÞÞ�
Xs�
i¼1

t�i ðfðx�;yiÞ�v�hðx�;yiÞÞ
 !

O0

¼)F x;x�;
Xs�
i¼1

t�irðfðx�;yiÞ�v�hðx�;yiÞÞ
 !

O�q0khðx;x�Þk2 ð21Þ
and

F x; x�;
Xp
j¼1

l�jrgjðx�Þ
 !

P � q1khðx;x�Þk2

¼) �b1ðx;x�Þ/1

Xp
j¼1

l�j gjðx�Þ
 !

> 0: ð22Þ
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Further, assume (7), (9), (10) and (16) are satisfied. Then x� is an optimal
solution of (P).

Proof. The proof is similar to that of Theorem 3.2 and hence omitted.

4. Duality Theorems

In this section, we present a new dual model for (P) and establish weak,
strong, and strict converse duality results for (P).
To unify and extend the dual models in [4, 5], we need to divide
f1; 2; . . . ; pg into several parts. Let Jað0O aO rÞ be a partition of
f1; 2; . . . ; pg, that is,

Ja 6¼ Jb for a 6¼ b and
[r
a¼0

Ja ¼ f1; 2; . . . ; pg:

We note that for (P)-optimal x�, (3) impliesX
j2Ja

l�j gjðx�Þ ¼ 0; a ¼ 0; 1; . . . ; r:

We now recast the necessary conditions in Theorem 2.1 in the following
form.

LEMMA 4.1 (Necessary conditions). Let x� be a (P)-optimal solution and
let rgjðx�Þ; j2 Jðx�Þ be linearly independent. Then there exist
ðs�; t�; �yÞ 2 K; v� 2 R, and l� 2 R

p
þ such that

Xs�
i¼1

t�i hðx�; yiÞ
 !

r
Xs�
i¼1

t�i fðx�; yiÞ þ
Xp
j¼1

l�j gjðx�Þ
 !

�
Xs�
i¼1

t�i fðx�; yiÞ þ
X
j2J0

l�j gjðx�Þ
 !

r
Xs�
i¼1

t�i hðx�; yiÞ
 !

¼ 0; ð23Þ

X
j2Ja

l�j gjðx�Þ ¼ 0; a ¼ 1; . . . ; r; ð24Þ

l� 2 R
p
þ; t�i P 0;

Xs�
i¼1

t�i ¼ 1; yi 2 Yðx�Þ; i ¼ 1; . . . ; s�; ð25Þ

where Jað0O a O rÞ is a partition of f1; 2; . . . ; pg.

Proof. It suffices to establish (23). From (1) and (2), we get
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r
Xs�
i¼1

t�i fðx�; yiÞ �
fðx�; ykÞ
hðx�; ykÞ

r
Xs�
i¼1

t�i hðx�; yiÞ

þ r
Xp
j¼1

l�j gjðx�Þ ¼ 0; k ¼ 1; . . . ; s�:

Multiplying the respective equation above by tihðx�; yiÞ; i ¼ 1; . . . ; s�, and
adding them altogether, we have

Xs�
i¼1

t�i hðx�; yiÞ
 !

r
Xs�
i¼1

t�i fðx�; yiÞ þ
Xp
j¼1

l�j gjðx�Þ
 !

�
Xs�
i¼1

t�i fðx�; yiÞ
 !

r
Xs�
i¼1

t�i hðx�; yiÞ
 !

¼ 0:

The above equation together with (3) implies

Xs�
i¼1

t�i hðx�; yiÞ
 !

r
Xs�
i¼1

t�i fðx�; yiÞ þ
Xp
j¼1

l�j gjðx�Þ
 !

�
Xs�
i¼1

t�i fðx�; yiÞ þ
X
j2J0

l�j gjðx�Þ
 !

r
Xs�
i¼1

t�i hðx�; yiÞ
 !

¼ 0:

The theorem is proved.

Our dual model is as follows.

(D) max
ðs;t; �yÞ2K

sup
ðz;lÞ2Hðs;t; �yÞ

Ps
i¼1 tifðz; yiÞ þ

P
j2J0 ljgjðzÞPs

i¼1 tihðz; yiÞ
;

where Hðs; t; �yÞ denotes the set of all ðz; lÞ 2 R
n � R

p
þ satisfying

Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
Xp
j¼1

ljgjðzÞ
 !

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
 !

¼ 0; ð26Þ

X
j2Ja

ljgjðzÞP 0; a ¼ 1; . . . ; r; ð27Þ

Ja 6¼ Jb for a 6¼ b and
[r
a¼0

Ja ¼ f1; 2; . . . ; pg:
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THEOREM 4.1 (Weak duality). Let x and ðz; l; s; t; �yÞ be (P)-feasible and
be (D)-feasible, respectively. Suppose there exist F; h;/0; b0; q0 and
/a; ba; qa; a ¼ 1; . . . ; r, such that

F x; z; ð
Xs
i¼1

tihðz; yiÞÞrð
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞÞ
 

Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞÞ
 !

P � q0khðx; zÞk2

¼) b0ðx; zÞ/0

Xs
i¼1

tihðz; yi

 ! ! Xs
i¼1

tifðx; yiÞ þ
X
j2J0

ljgjðxÞ
 !

:

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx; yiÞ

 !!
P 0 ð28Þ

and

� baðx; zÞ/a

Xs
i¼1

tihðz; yiÞ
 ! X

j2Ja

ljgjðzÞ
 ! !

O 0

¼) F x; z;
Xs
i¼1

tihðz; yiÞ
 ! X

j2Ja

ljrgjðzÞ
 ! !

O � qakhðx; zÞk2; a ¼ 1; . . . ; r: ð29Þ
Further, assume

aP 0 ¼) /aðaÞP 0; a ¼ 1; . . . ; r; ð30Þ

/0ðaÞP 0 ¼) aP 0; ð31Þ
b0ðx; zÞ > 0; baðx; zÞP 0; a ¼ 1; . . . ; r; ð32Þ

q0 þ
Xr
a¼1

qa P 0: ð33Þ

Then

sup
y2Y

fðx; yÞ
hðx; yÞ P

Ps
i¼1 tifðz; yiÞ þ

P
j2J0 ljgjðzÞPs

i¼1 tihðz; yiÞ
:

Proof. Suppose to the contrary that

sup
y2Y

fðx; yÞ
hðx; yÞ <

Ps
i¼1 tifðz; yiÞ þ

P
j2J0 ljgjðzÞPs

i¼1 tihðz; yiÞ
:
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Thus we have an inequality

Xs
i¼1

tihðz; yiÞ
 !

fðx; yÞ <
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

hðx; yÞ 8y 2 Y:

Furthermore, this implies

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx; yiÞ

 !
<
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

�
Xs
i¼1

tihðx; yiÞ
 !

:

Hence, we have

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx; yiÞ þ

X
j2J0

ljgjðxÞ
 !

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx; yiÞ

 !

<
Xs
i¼1

tihðz; yiÞ
 ! X

j2J0
ljgjðxÞ

 !
:

Using the fact that
Ps

i¼1 tihðz; yiÞ > 0;
P

j2J0 ljgjðxÞO 0, and the last
inequality, we have

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx; yiÞ þ

X
j2J0

ljgjðxÞ
 !

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx; yiÞ

 !
< 0: ð34Þ

From (34), (31), (32) and (28), we get

F x; z;
Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
 !!

< �q0khðx; zÞk2:

ð35Þ
Using

Ps
i¼1 tihðz; yiÞ > 0, (27), (32) and (30) we get
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�baðx; zÞ/a

Xs
i¼1

tihðz; yiÞ
 ! X

j2Ja

ljgjðzÞ
 ! !

O 0; a ¼ 1; . . . ; r;

and whence from (29), we have

F x;z;
Xs
i¼1

tihðz;yiÞ
 ! X

j2Ja

ljrgjðzÞ
 ! !

O �qakhðx;zÞk2; a¼ 1; . . . ; r:

ð36Þ
Now, on adding (35) and (36), and utilizing the sublinearity of F and (33),
we obtain

F x; z;
Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
Xp
j¼1

ljgjðzÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
 !!

< 0;

which is a contradiction to (26). This completes the proof.
Similar to the proof of Theorem 4.1, we can establish Theorem 4.2.

Therefore, we simply state it here without proof.

THEOREM 4.2 (Weak duality). Let x and ðz; l; s; t; �yÞ be (P)-feasible
and be (D)-feasible, respectively. Suppose there exist F; h;/0; b0;q0 and
/a; ba; qa; a ¼ 1; . . . ; r, such that

b0ðx; zÞ/0

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx; yiÞ þ

X
j2J0

ljgjðxÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx; yiÞ

 !!
< 0

¼) F x; z;
Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
 !!

O � q0khðx; zÞk2

and
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� baðx; zÞ/a ð
X
j2Ja

ljgjðzÞÞð
Xs
i¼1

tihðz; yiÞÞ
 !

O 0

¼) F x; z; ð
Xs
i¼1

tihðz; yiÞÞð
X
j2Ja

ljrgjðzÞÞ
 !

< �qakhðx; zÞk2; a ¼ 1; . . . ; r:

Further, assume (ref34), (31), (32) and (33) are satisfied. Then

sup
y2Y

fðx; yÞ
hðx; yÞ P

Ps
i¼1 tifðz; yiÞ þ

P
j2J0 ljgjðzÞPs

i¼1 tihðz; yiÞ
:

THEOREM 4.3 (Strong duality). Assume that x� is a (P)-optimal solution
and rgjðx�Þ; j 2 Jðx�Þ is linearly independent. Then there exist
ðs�; t�; �yÞ 2 K; ðx�; l�Þ 2 Hðs�; t�; �yÞ such that ðx�;l�; t�; �yÞ is a (D)-optimal
solution. If, in addition, the hypothesis of Theorem 4.1 or Theorem 4.2 holds
for a (D)-feasible point ðz; l; v; s; t; �yÞ, then the two problems (P) and (D)
have the same extremal values.

Proof. By Lemma 4.1, there exist ðs�; t�; �yÞ 2 K; ðx�;l�Þ 2 Hðs�; t�; �yÞ such
that ðx�;l�; s�; t�; �yÞ is a feasible solution for (D), optimality of this feasible
solution for (D) follows from Theorem 4.1 or Theorem 4.2 accordingly.

THEOREM 4.4 (Strict converse duality). Let x� and ðz;l; s; t; �yÞ be optimal
solutions of (P) and (D), respectively. Suppose that rgjðx�Þ; j 2 Jðx�Þ is line-
arly independent, and there exist F; h;/0; b0; q0 and /a; ba;qa; a ¼ 1; . . . ; r;
such that

F x�; z;
Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
 !!

P � q0khðx�; zÞk2

¼) b0ðx�; zÞ/0

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx�; yiÞ þ

X
j2J0

ljgjðx�Þ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx�; yiÞ

 !!
P 0 ð37Þ

and
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� baðx�; zÞ/a

Xs
i¼1

tihðz; yiÞÞð
X
j2Ja

ljgjðzÞ
 ! !

O 0

¼) F x�; z;
Xs
i¼1

tihðz; yiÞ
 ! X

j2Ja
ljrgjðzÞ

 ! !

O � qakhðx�; zÞk2; a ¼ 1; . . . ; r: ð38Þ
Further, assume (30), (32), (33) and

/0ðaÞP 0 ¼) a > 0: ð39Þ
Then x� ¼ z; that is, z is a (P)-optimal solution.

Proof. We shall assume that x� 6¼ z and reach a contradiction. From
Theorem 4.3, we know that

sup
y2Y

fðx�; yÞ
hðx�; yÞ ¼

Ps
i¼1 tifðz; yiÞ þ

P
j2J0 ljgjðzÞPs

i¼1 tihðz; yiÞ
:

Thus we have

Xs
i¼1

tihðz; yiÞ
 !

fðx�; yÞO
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

hðx�; yÞ 8y 2 Y:

This further implies

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx�; yiÞ

 !
O

Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

�
Xs
i¼1

tihðx�; yiÞ
 !

:

Hence, we have

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx�; yiÞ þ

X
j2J0

ljgjðx�Þ
 !

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx�; yiÞ

 !

O
Xs
i¼1

tihðz; yiÞ
 ! X

j2J0
ljgjðx�Þ

 !
:

Using the fact that
Ps

i¼1 tihðz; yiÞ > 0;
P

j2J0 ljgjðx�ÞO 0 and the last
inequality, we have

248 X. -M. YANG AND S. -H. HOU



Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx�; yiÞ þ

X
j2J0

ljgjðx�Þ
 !

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx�; yiÞ

 !
O 0: ð40Þ

From (40), (39), (32) and (37), we get

F x�;z;
Xs
i¼1

tihðz;yiÞ
 !

r
Xs
i¼1

tifðz;yiÞþ
X
j2J0

ljgjðzÞ
 ! !

�
Xs
i¼1

tifðz;yiÞþ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz;yiÞ
 !

<�q0khðx�;zÞk2: ð41Þ

Using
Ps

i¼1 tihðz; yiÞ > 0 , (27), (30) and (32) we get

�baðx�; zÞ/a

Xs
i¼1

tihðz; yiÞ
 ! X

j2Ja

ljgjðzÞ
 ! !

O 0; a ¼ 1; . . . ; r:

From (38), we have

F x�; z;
Xs
i¼1

tihðz; yiÞÞ
X
j2Ja

ljrgjðzÞ
 ! !

O � qakhðx�; zÞk2; a ¼ 1; . . . ; r:

ð42Þ
Now, on adding (41) and (42), and utilizing the sublinearity of F and (33),
we obtain

F x�; z;
Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
Xp
j¼1

ljgjðzÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
! !

< 0;

which is a contradiction to (30). The proof is completed.
Similar to the proof of Theorem 4.4, we can establish Theorem 4.5.

Therefore, we simply state it here without proof.

THEOREM 4.5 (Strict converse duality). Let x� and ðz; l; s; t; �yÞ be optimal
solutions of (P) and (D), respectively, and suppose that rgjðx�Þ; j 2 Jðx�Þ is
linearly independent, and there exist F; h;/0; b0; q0 and /a; ba;
qa; a ¼ 1; . . . ; r; such that

ON MINIMAX FRACTIONAL OPTIMALITY AND DUALITY 249



b0ðx�; zÞ/0

Xs
i¼1

tihðz; yiÞ
 ! Xs

i¼1
tifðx�; yiÞ þ

X
j2J0

ljgjðx�Þ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! Xs

i¼1
tihðx�; yiÞ

 !!
< 0

¼) F x�; z;
Xs
i¼1

tihðz; yiÞ
 !

r
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 ! 

�
Xs
i¼1

tifðz; yiÞ þ
X
j2J0

ljgjðzÞ
 !

r
Xs
i¼1

tihðz; yiÞ
 !!

O � q0khðx�; zÞk2

and

�baðx�;zÞ/a

Xs
i¼1

tihðz;yiÞÞð
X
j2Ja

ljgjðzÞ
 ! !

O0

¼) F x�;z;
Xs
i¼1

tihðz;yiÞ
 ! X

j2Ja

ljrgjðzÞ
 ! !

<�qakhðx�;zÞk2; a¼ 1; . . . ;r:

Further, assume

aP 0 ¼) /aðaÞP 0; a ¼ 1; . . . ; r

/0ðaÞP 0 ¼) a > 0;

b0ðx�; zÞ > 0; baðx�; zÞP 0; a ¼ 1; . . . ; r;

q0 þ
Xr
a¼1

qa P 0:

Then x� ¼ z; that is, z is a (P)-optimal solution.

Remark 4.1. (i) If /0ðtÞ ¼ /aðtÞ ¼ t; a ¼ 1; . . . ; r; b0ðx; zÞ ¼ baðx; zÞ ¼ 1;
a ¼ 1; . . . ; r; J0 ¼ ;; Jb ¼ f1; . . . ; pg for some b; Ja ¼ ; for a 6¼ b;Fðx; z; aÞ ¼
gðx; zÞTa; and qa ¼ 0; a ¼ 0; 1; . . . ; r; then it is obvious that theorem 4.1–4.5
above reduce to Theorem 3.1–3.3 in [4]. If /0ðtÞ ¼ /aðtÞ ¼ t;
a ¼ 1; . . . ; r; b0ðx; zÞ ¼ baðx; zÞ ¼ 1; a ¼ 1; . . . ; r; J0 ¼ ;; Jb ¼ f1; . . . ; pg for
some b; Ja ¼ ; for a 6¼ b; then it is obvious that theorem 4.1–4.5 above
reduce to Theorem 4.1–4.3 in [5].
(ii) If /0ðtÞ ¼ /aðtÞ ¼ t; a ¼ 1; . . . ; r; b0ðx; zÞ ¼ baðx; zÞ ¼ 1; a ¼ 1; . . . ; r;

J0 ¼ f1; . . . ; pg; Ja ¼ ;; a ¼ 1; . . . ; r;Fðx; z; aÞ ¼ gðx; zÞTa; and qa ¼ 0; a ¼ 0;
1; . . . ; r; then it is obvious that theorem 4.1–4.5 above reduce to Theorem
5.2–5.4 in [4]. If /0ðtÞ ¼ /aðtÞ ¼ t; a ¼ 1; . . . ; r; b0ðx; zÞ ¼ baðx; zÞ ¼ 1;
a ¼ 1; . . . ; r; J0 ¼ f1; . . . ; pg; Ja ¼ ; a ¼ 0; 1; . . . ; r; then it is obvious that the-
orem 4.1–4.5 above reduce to Theorem 4.9–4.11 in [5].
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From Remarks 3.1 and 4.1, we conclude that the results obtained in this
article unifies and extends those of [4, 5] in the framework of generalized
convexity and dual models.

5. Discussion

In this paper, we present some new classes of generalized convexity and a
unified dual model for the generalized fractional minimax programming
problem. Based on our formulation, we also obtain sufficient optimality
conditions and derive a number of duality results for the generalized frac-
tional minimax programming problem under the assumptions of general-
ized convexity. It is noted that the previously known results in [4, 5] are
now some special cases of our results. In fact, by appropriate choices of
the partitioning sets J0; Ja; a ¼ 1; 2; . . . ; r; we are able to obtain a number
of interesting new situations.
We remark that Lai and Lee [9] and Lai et al. [10] had considered general

non differentiable minimax fractional programming problem in the form:

ðPÞ0
minimize sup

y2Y

fðx; yÞ þ ðxTAxÞ
1
2

hðx; yÞ � ðxTBxÞ
1
2

subject to gðxÞO 0;

where A and B are n� n positive semidefinite matrices satisfying

fðx; yÞ þ ðxTAxÞ1=2 P 0 and hðx; yÞ � ðxTBxÞ1=2 > 0

8ðx; yÞ 2 X ¼ fx 2 R
n : gðxÞO 0g:

They introduced two dual models for problem (P)’ and proved duality
theorems under convexity, pseudoconvexity and quasiconvexity conditions.
It will be interesting to see whether or not the dual models and the corre-
sponding results developed in this paper still hold for the above nondiffer-
entiable minimax fractional programming problem (P)’.
We also note that the minimax fractional programming problem (P) in

this paper reduce to the generalized fractional programming problem (P) in
[11, 12] if Y is a finite index set. And our results greatly improve, unify
and extend the work in [11]. Meanwhile, based on the ideas in [12], the
study on saddle-point type optimality criteria for minimax fractional pro-
gramming problem (P) will be pursued in future research.
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